
Database Systems

Mohamed Zahran (aka Z)

mzahran@cs.nyu.edu

http://www.mzahran.com

CSCI-GA.2433-001

Lecture 4: Relational Algebra and Calculus

Query Languages
(e.g. SQL)

Are specialized languages
for asking questions.

Relational Algebra and Calculus

Procedural: Algebra Declarative: Calculus

Query
Instances

of
Relations

Instances
of

A Relation

Relational Algebra

• Queries are composed using a collection
of operators.

• Every operator:
– Accepts one or two relation instances
– Returns a relation instance.

• Compose relational algebra expression
• Each query describes a step-by-step

procedure for computing the desired
answer.

Relational Algebra

• Five basic operators
– Selection

– Projection

– Union

– Cross-product

– Difference

Selection

)(
_

Input
CriteriaSelection



A relation instance

The selection operator specifies the tuples to retain through selection criteria.

A boolean combination (i.e. using V and ᴧ) of terms

Attribute op constant or attribute1 op attribute2

< , <=, =, ≠, >=, or >

Manipulates data in a single relation

Selection

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

S2


rating

S
8

2()

sid sname rating age

28 yuppy 9 35.0
58 rusty 10 35.0

Projection

)(Input
fields



Allows us to extract columns from a relation

age

35.0
55.5

age S()2

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

Example:

 
sname rating rating

S
,

(())
8

2

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sname rating

yuppy 9

rusty 10

Set Operations

• Takes as input two relation instances
• Four standard operations

– Union
– Intersection
– Set-difference
– Cross-product

• Union, intersection, and difference require
the two input set to be union compatible
– They have the same number of fields
– corresponding fields, taken in order from left

to right, have the same domains

Set Operation: Union

• R U S returns relation instance
containing all tuples that occur in either
relation instance R or S, or both.

• R and S must be union compatible.

• Schema of the result is defined to be
that of R.

Set Operation: Union

sid sname rating age

22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

S1 S2

S1 U S2

Set Operation: Intersection

• R ⋂ S: returns a relation instance
containing all tuples that occur in both R
and S.

• R and S must be union compatible.

• Schema of the result is that of R.

Set Operation: Intersection

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

S1 S2

S1 ⋂ S2
sid sname rating age

31 lubber 8 55.5
58 rusty 10 35.0

Set Operation: Set-Difference

• R – S: returns a relation instance
containing all tuples that occur in R but
not in S.

• R and S must be union-compatible.

• Scheme of the result is the schema of
R.

Set Operation: Set-Difference

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1 S2

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid sname rating age

22 dustin 7 45.0

S1 – S2

Set Operation: Cross-Product

• R x S: Returns a relation instance whose
scheme contains:
– All the fields of R (in the same order as they

appear in R)
– All the fields os S (in the same order as they

appear in S)

• The result contains one tuple <r,s> for each
pair with r ⋳ R and s ⋳ S

• Basically, it is the Cartesian product.

• Fields of the same name are unnamed.

Set Operation: Cross-Product

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1

sid bid day

22 101 10/10/96

58 103 11/12/96

R1

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

S1 x R1

Renaming

• Name conflict can arise in some
situations

• It is convenient to be able to give names
to the fields of a relation instance
defined by a relational algebra
expression.

)),((EFR

•Take arbitrary relational expression E
• Returns an instance of a new relation R
• R is the result of E except that some fields are renamed
• Renaming list has the form (oldname  newname or position  newname)

Renaming
)11),25,11((RSsidsidC 

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

sid1 sname rating age sid2 bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

Question: Can you define R ⋂ S
using other operators?

Other Operators?

• We can define any operation using the
operators that we have seen.

• Some other operations appear very
frequently.

• So they deserve to have their own
operators.
– Join

– Division

Join

• Can be defined as cross-product
followed by selection and projection.

• We have several variants of join.
– Condition joins

– Equijoin

– Natural join

Condition Join
R c S c R S   ()

Example: S R
S sid R sid

1 1
1 1


. .

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 58 103 11/12/96

Equijoin

ScR 

•Condition consists only of equalities connected by ᴧ
• Redundancy in retaining both attributes in result
• So, an additional projection is applied to remove
 the second attribute.

Equijoin

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

11
..

RS
idSsidR 

Example:

sid sname rating age bid day

22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96

Natural Join

• It is an equijoin in which equalities are
specified on all fields having the same
name in R and S

• We can then omit the join condition.

• Result is guaranteed not to have two
fields with the same name.

• If no fields in common, then natural join
is simply cross product.

Division

• Suppose A has two groups of fields <x,y>

• y fields are same fields in terms of
domain as B

• A/B = <x> such as for every y value in a
tuple of B there is <x,y> in A.

Division

sno pno

s1 p1
s1 p2
s1 p3
s1 p4
s2 p1
s2 p2
s3 p2

s4 p2

s4 p4

pno

p2

pno

p2

p4

pno

p1

p2

p4

sno

s1

s2

s3

s4

sno

s1

s4

sno

s1

A

B1
B2

B3

A/B1
A/B2 A/B3

Question: Can we define A/B
using the other basic operators?

Disqualified x values:

 A/B:  x A()  all disqualified tuples

 x x A B A((())) 

Examples
sid sname ratin age

Q1. Find the names of sailors who have reserved boat 103

 sname bid
serves Sailors((Re))

103


))Re(
103

(Sailorsserves
bidsname 




Solution 1:

Solution 2:

Sailors Reserves Boats

Examples
sid sname ratin age

Sailors Reserves Boats

Q2: Find the names of sailors who have reserved a red boat.

 sname color red
Boats serves Sailors((

' '
) Re)


 

   sname sid bid color red
Boats s Sailors(((

' '
) Re))


 

Sol1:

Sol2:

Examples
sid sname ratin age

Sailors Reserves Boats

Q3: Find the colors of boats reserved by Lubber.

)Re)
''

((BoatsservesSailors
Lubbersnamecolor






Examples
sid sname ratin age

Sailors Reserves Boats

Q5. Fine the names of sailors who reserved a red or a green boat.

 (, (
' ' ' '

))Tempboats
color red color green

Boats
  

 sname Tempboats serves Sailors(Re) 

Relational Calculus

• An alternative to relational algebra.
• Declarative

– describe the set of answers
– without being explicit about how they should be

computed

• One variant is called: tuple relational calculus
(TRC).

• Another variant: domain relational calculus
(DRC)

• Calculus has variables, constants, comparison
ops, logical connectives and quantifiers.

Tuple Relational Calculus

• A TRC query has the form {T | p(T)}
– T is a tuple variable

– p(T) is a formula that describes T

• Result: set of all tuples t to which p(T)
evaluates to true when T = t

• Example:

Tuple Relational Calculus

Q: Find the names and ages of sailors with a rating above 7

Q: Find the sailor name, boat id, and reservation date for each reservation.

Domain Relational Calculus

• Query has the form:
x x xn p x x xn1 2 1 2, ,..., | , ,...,































• Answer includes all tuples that
 make the formula be true.

x x xn1 2, ,...,

p x x xn1 2, ,...,














Example: Find all sailors with a rating above 7

Giving each attribute a
variable name

Ensures that I, N, T, and A
are restricted to be fields
of the same tuple

Algebra Vs Calculus

• Every query that can be expressed in
relational algebra can also be expressed
in relational calculus.

• The other way around is a bit tricky.
Think, for example, about:

Conclusions

• Relational algebra and calculus are the
foundation of query languages like SQL.

• Queries are expressed by languages like
SQL, and the DBMS translates the query
into relational algebra.
– DBMS tries to look for the cheapest relational

expression.
• Section 4.2.6 is very useful, pay close

attention to it.
• For the calculus part, we will use slides

only.

