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Lecture 4: Relational Algebra and Calculus 



Query Languages 
(e.g. SQL) 

Are specialized languages 
for asking questions. 

Relational Algebra and Calculus  

Procedural: Algebra Declarative: Calculus 



Query  
Instances 

of 
Relations 

Instances 
of 

A Relation 



Relational Algebra 

• Queries are composed using a collection 
of operators. 

• Every operator: 
– Accepts one or two relation instances 
– Returns a relation instance. 

• Compose relational algebra expression 
• Each query describes a step-by-step 

procedure for computing the desired 
answer. 
 



Relational Algebra 

• Five basic operators 
– Selection 

– Projection 

– Union 

– Cross-product 

– Difference 
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A relation instance 

The selection operator specifies the tuples to retain through selection criteria. 

A boolean combination (i.e. using V  and ᴧ) of terms 

Attribute op constant    or  attribute1 op attribute2 

< , <=, =, ≠, >=, or > 

Manipulates data in a single relation 



Selection 

sid sname rating age 

28 yuppy 9 35.0 

31 lubber 8 55.5 

44 guppy 5 35.0 

58 rusty 10 35.0 
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sid sname rating age 

28 yuppy 9 35.0 
58 rusty 10 35.0 

 

 



Projection 
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Allows us to extract columns from a relation 

age 

35.0 
55.5 
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sid sname rating age 

28 yuppy 9 35.0 

31 lubber 8 55.5 

44 guppy 5 35.0 

58 rusty 10 35.0 
 

 

Example: 
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sid sname rating age 

28 yuppy 9 35.0 

31 lubber 8 55.5 

44 guppy 5 35.0 

58 rusty 10 35.0 
 

 

sname rating 

yuppy 9 

rusty 10 
 

 



Set Operations 

• Takes as input two relation instances 
• Four standard operations 

– Union 
– Intersection 
– Set-difference 
– Cross-product 

• Union, intersection, and difference require 
the two input set to be union compatible 
– They have the same number of fields 
– corresponding fields, taken in order from left 

to right, have the same domains 



Set Operation: Union 

• R U S returns relation instance 
containing all tuples that occur in either 
relation instance R or S, or both. 

• R and S must be union compatible. 

• Schema of the result is defined to be 
that of R. 



Set Operation: Union 

sid sname rating age 

22 dustin 7 45.0 
31 lubber 8 55.5 
58 rusty 10 35.0 
44 guppy 5 35.0 
28 yuppy 9 35.0 

 

 

sid sname rating age 

22 dustin 7 45.0 

31 lubber 8 55.5 

58 rusty 10 35.0 
 

 

sid sname rating age 

28 yuppy 9 35.0 

31 lubber 8 55.5 

44 guppy 5 35.0 

58 rusty 10 35.0 
 

 

S1 S2 

S1 U S2 



Set Operation: Intersection 

• R ⋂ S: returns a relation instance 
containing all tuples that occur in both R 
and S. 

• R and S must be union compatible. 

• Schema of the result is that of R. 



Set Operation: Intersection 

sid sname rating age 

22 dustin 7 45.0 

31 lubber 8 55.5 

58 rusty 10 35.0 
 

 

sid sname rating age 

28 yuppy 9 35.0 

31 lubber 8 55.5 

44 guppy 5 35.0 

58 rusty 10 35.0 
 

 

S1 S2 

S1 ⋂ S2 
sid sname rating age 

31 lubber 8 55.5 
58 rusty 10 35.0 

 

 



Set Operation: Set-Difference 

• R – S: returns a relation instance 
containing all tuples that occur in R but 
not in S. 

• R and S must be union-compatible. 

• Scheme of the result is the schema of 
R. 



Set Operation: Set-Difference 

sid sname rating age 

22 dustin 7 45.0 

31 lubber 8 55.5 

58 rusty 10 35.0 
 

 

S1 S2 

sid sname rating age 

28 yuppy 9 35.0 

31 lubber 8 55.5 

44 guppy 5 35.0 

58 rusty 10 35.0 
 

 

sid sname rating age 

22 dustin 7 45.0 
 

 

S1 – S2 



Set Operation: Cross-Product 

• R x S: Returns a relation instance whose 
scheme contains: 
– All the fields of R (in the same order as they 

appear in R) 
– All the fields os S (in the same order as they 

appear in S) 

• The result contains one tuple <r,s> for each 
pair with r ⋳ R and s ⋳ S 

• Basically, it is the Cartesian product. 

• Fields of the same name are unnamed. 



Set Operation: Cross-Product 

sid sname rating age 

22 dustin 7 45.0 

31 lubber 8 55.5 

58 rusty 10 35.0 
 

 

S1 

sid bid day 

22 101 10/10/96 

58 103 11/12/96 
 

 

R1 

(sid) sname rating age (sid) bid day 

22 dustin 7 45.0 22 101 10/10/96 

22 dustin 7 45.0 58 103 11/12/96 

31 lubber 8 55.5 22 101 10/10/96 

31 lubber 8 55.5 58 103 11/12/96 

58 rusty 10 35.0 22 101 10/10/96 

58 rusty 10 35.0 58 103 11/12/96 
 

 

S1 x R1  



Renaming 

• Name conflict can arise in some 
situations 

• It is convenient to be able to give names 
to the fields of a relation instance 
defined by a relational algebra 
expression. 

 )),(( EFR

•Take arbitrary relational expression E  
• Returns an instance of a new relation R 
• R is the result of E except that some fields are renamed  
• Renaming list has the form  (oldname  newname or position  newname) 



Renaming 
)11),25,11(( RSsidsidC 

(sid) sname rating age (sid) bid day 

22 dustin 7 45.0 22 101 10/10/96 

22 dustin 7 45.0 58 103 11/12/96 

31 lubber 8 55.5 22 101 10/10/96 

31 lubber 8 55.5 58 103 11/12/96 

58 rusty 10 35.0 22 101 10/10/96 

58 rusty 10 35.0 58 103 11/12/96 
 

 

sid1 sname rating age sid2 bid day 

22 dustin 7 45.0 22 101 10/10/96 

22 dustin 7 45.0 58 103 11/12/96 

31 lubber 8 55.5 22 101 10/10/96 

31 lubber 8 55.5 58 103 11/12/96 

58 rusty 10 35.0 22 101 10/10/96 

58 rusty 10 35.0 58 103 11/12/96 
 

 



Question: Can you define R ⋂ S 
using other operators?  



Other Operators? 

• We can define any operation using the 
operators that we have seen. 

• Some other operations appear very 
frequently. 

• So they deserve to have their own 
operators. 
– Join 

– Division 



Join 

• Can be defined as cross-product 
followed by selection and projection. 

• We have several variants of join. 
– Condition joins 

– Equijoin 

– Natural join 



Condition Join 
R c S c R S   ( )

Example:  S R
S sid R sid

1 1
1 1


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(sid) sname rating age (sid) bid day 

22 dustin 7 45.0 22 101 10/10/96 

22 dustin 7 45.0 58 103 11/12/96 

31 lubber 8 55.5 22 101 10/10/96 

31 lubber 8 55.5 58 103 11/12/96 

58 rusty 10 35.0 22 101 10/10/96 

58 rusty 10 35.0 58 103 11/12/96 
 

 

(sid) sname rating age (sid) bid day 

22 dustin 7 45.0 58 103 11/12/96 
31 lubber 8 55.5 58 103 11/12/96 

 

 



Equijoin 

ScR 

•Condition consists only of equalities connected by ᴧ 
• Redundancy in retaining both attributes in result 
• So, an additional projection is applied to remove 
   the second attribute. 



Equijoin 

(sid) sname rating age (sid) bid day 

22 dustin 7 45.0 22 101 10/10/96 

22 dustin 7 45.0 58 103 11/12/96 

31 lubber 8 55.5 22 101 10/10/96 

31 lubber 8 55.5 58 103 11/12/96 

58 rusty 10 35.0 22 101 10/10/96 

58 rusty 10 35.0 58 103 11/12/96 
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Example: 

sid sname rating age bid day 

22 dustin 7 45.0 101 10/10/96 
58 rusty 10 35.0 103 11/12/96 

 

 



Natural Join 

• It is an equijoin in which equalities are 
specified on all fields having the same 
name in R and S 

• We can then omit the join condition. 

• Result is guaranteed not to have two 
fields with the same name. 

• If no fields in common, then natural join 
is simply cross product. 



Division 

• Suppose A has two groups of fields <x,y> 

• y fields are same fields in terms of 
domain as B 

• A/B = <x> such as for every y value in a 
tuple of B there is <x,y> in A. 



Division 

sno pno 

s1 p1 
s1 p2 
s1 p3 
s1 p4 
s2 p1 
s2 p2 
s3 p2 

s4 p2 

s4 p4 
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Question: Can we define A/B 
using the other basic operators? 

Disqualified x values: 

 A/B:  x A( )  all disqualified tuples 

 x x A B A(( ( ) ) ) 



Examples 
sid       sname  ratin     age 

Q1. Find the names of sailors who have reserved boat 103 

 sname bid
serves Sailors(( Re ) )

103


))Re(
103

( Sailorsserves
bidsname 




Solution 1:  

Solution 2:  

Sailors Reserves Boats 



Examples 
sid       sname  ratin     age 

Sailors Reserves Boats 

Q2: Find the names of sailors who have reserved a red boat. 

 sname color red
Boats serves Sailors((

' '
) Re )


 

   sname sid bid color red
Boats s Sailors( ((

' '
) Re ) )


 

Sol1: 

Sol2: 



Examples 
sid       sname  ratin     age 

Sailors Reserves Boats 

Q3: Find the colors of boats reserved by Lubber. 

)Re)
''

(( BoatsservesSailors
Lubbersnamecolor








Examples 
sid       sname  ratin     age 

Sailors Reserves Boats 

Q5. Fine the names of sailors who reserved a red or a green boat. 

 ( , (
' ' ' '

))Tempboats
color red color green

Boats
  

 sname Tempboats serves Sailors( Re ) 



Relational Calculus 

• An alternative to relational algebra. 
• Declarative 

– describe the set of answers 
– without being explicit about how they should be 

computed 

• One variant is called: tuple relational calculus 
(TRC). 

• Another variant: domain relational calculus 
(DRC) 

• Calculus has variables, constants, comparison 
ops, logical connectives and quantifiers. 
 



Tuple Relational Calculus 

• A TRC query has the form {T | p(T)} 
– T is a tuple variable 

– p(T) is a formula that describes T 

• Result: set of all tuples t to which p(T) 
evaluates to true when T = t 

• Example:  



Tuple Relational Calculus 

Q: Find the names and ages of sailors with a rating above 7 

Q: Find the sailor name, boat id, and reservation date for each reservation. 



Domain Relational Calculus  

• Query has the form: 
x x xn p x x xn1 2 1 2, ,..., | , ,...,


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
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




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













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• Answer includes all tuples                            that 
   make the formula                                be true. 

x x xn1 2, ,...,

p x x xn1 2, ,...,














Example:    Find all sailors with a rating above 7 

Giving each attribute a  
variable name 

Ensures that I, N, T, and A 
are restricted to be fields  
of the same tuple 



Algebra Vs Calculus 

• Every query that can be expressed in 
relational algebra can also be expressed 
in relational calculus. 

• The other way around is a bit tricky. 
Think, for example, about: 



Conclusions 

• Relational algebra and calculus are the 
foundation of query languages like SQL. 

• Queries are expressed by languages like 
SQL, and the DBMS translates the query 
into relational algebra.  
– DBMS tries to look for the cheapest relational 

expression. 
• Section 4.2.6 is very useful, pay close 

attention to it. 
• For the calculus part, we will use slides 

only. 


